If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x^2 = 0
x^2 = 0
x^2 = 0
1*x^2 = 0 // : 1
x^2 = 0
x = 0
x in (-oo:0) U (0:+oo)
x^2+1/(x^2) = 62 // - 62
x^2+1/(x^2)-62 = 0
x^2+x^-2-62 = 0
t_1 = x^2
1*t_1^1+1*t_1^-1-62 = 0
1*t_1^1+1*t_1^-1-62*t_1^0 = 0
(1*t_1^2-62*t_1^1+1*t_1^0)/(t_1^1) = 0 // * t_1^2
t_1^1*(1*t_1^2-62*t_1^1+1*t_1^0) = 0
t_1^1
t_1^2-62*t_1+1 = 0
t_1^2-62*t_1+1 = 0
DELTA = (-62)^2-(1*1*4)
DELTA = 3840
DELTA > 0
t_1 = (3840^(1/2)+62)/(1*2) or t_1 = (62-3840^(1/2))/(1*2)
t_1 = (16*15^(1/2)+62)/2 or t_1 = (62-16*15^(1/2))/2
t_1 in { (62-16*15^(1/2))/2, (16*15^(1/2)+62)/2}
t_1 = (62-16*15^(1/2))/2
x^2-((62-16*15^(1/2))/2) = 0
1*x^2 = (62-16*15^(1/2))/2 // : 1
x^2 = (62-16*15^(1/2))/2
x^2 = (62-16*15^(1/2))/2 // ^ 1/2
abs(x) = ((62-16*15^(1/2))^(1/2))/(2^(1/2))
x = ((62-16*15^(1/2))^(1/2))/(2^(1/2)) or x = -(((62-16*15^(1/2))^(1/2))/(2^(1/2)))
t_1 = (16*15^(1/2)+62)/2
x^2-((16*15^(1/2)+62)/2) = 0
1*x^2 = (16*15^(1/2)+62)/2 // : 1
x^2 = (16*15^(1/2)+62)/2
x^2 = (16*15^(1/2)+62)/2 // ^ 1/2
abs(x) = ((16*15^(1/2)+62)^(1/2))/(2^(1/2))
x = ((16*15^(1/2)+62)^(1/2))/(2^(1/2)) or x = -(((16*15^(1/2)+62)^(1/2))/(2^(1/2)))
x in { ((62-16*15^(1/2))^(1/2))/(2^(1/2)), -(((62-16*15^(1/2))^(1/2))/(2^(1/2))), ((16*15^(1/2)+62)^(1/2))/(2^(1/2)), -(((16*15^(1/2)+62)^(1/2))/(2^(1/2))) }
| 1/x^2+x^2=62 | | 2/5+120=x | | 13x+4=5x+20 | | 6x^2-10x-21=-5 | | 2x^2-x-52=3 | | 3v^2+11v+11=3 | | -3n^2-9n-6=0 | | -4r^2-3r+76=0 | | 3m^2+7m-40=0 | | n^2-13n-14=0 | | v^2-20v+91=0 | | 2x+1.5y=32 | | 7n^2-55n-8=0 | | 3x^2+4k+1=0 | | x^2+2k-3=0 | | (a+4)(8a-7)=0 | | 1(3+x)-3=42 | | 10(3+x)-3=42 | | 4(3+x)-3=42 | | .06x+10.3=x-3.26 | | -0.5x+8.93=-0.7x+9.93 | | -.09x+5.12=-0.4x+7.12 | | -0.2x+1.41=0.4x+8.81 | | 6x-9=4x-5 | | (n+1)(n-7)=0 | | (5x+3)(x-5)=0 | | 8k^2-8=640 | | x^2-1=80 | | k^2=37 | | 5x+6=x+74 | | 5x+40=8x+15 | | 6p^2-3=147 |